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Analysis of flexural creep for an SiC fibre- 
reinforced Si3N4 composite 

R. B. THAYER J . - M .  YANG 
Department of Materials Science and Engineering, University of California, Los Angeles, 
CA 90024-1595, USA 

A numerical analysis for extracting the tensile and compressive creep power-law parameters from 
flexural test data is applied to an SiC fibre-reinforced hot-pressed Si3N 4 composite. The evolution 
and steady-state conditions of the stress distribution during creep and the effect of neutral-plane 
migration on the creep behaviour are also analysed. Finally, the kinetics and mechanisms of 
high-temperature creep in the composite are discussed with respect to the results of the numerical 
analysis. 

1. I n t r o d u c t i o n  
Continuous fibre-reinforced ceramic matrix com- 
posites are promising engineering materials for high- 
temperature structural applications such as gas tur- 
bine engines [1, 2]. Before these composites can be 
reliably used in structural applications at elevated 
temperatures, a greater understanding of their creep 
characteristics and mechanisms must be developed. 
Up to now, the majority of creep tests have been 
conducted using three-point and four-point flexural 
tests. This is primarily due to the simplicity of speci- 
men geometry and experimental procedures. The ma- 
jor drawback in using this technique is the complex 
stress distribution that develops during testing. When 
analysing the power-law creep parameters from bend 
test data, it is usually assumed that tensile and com- 
pressive creep obey the same constitutive law and only 
one stress exponent is determined to characterize the 
material. Experimentally, though, tensile and com- 
pressive creep have been found to be different in sili- 
conized SiC [3], AlzO 3 and Si3N,, [-4], as well as in 
most ceramic materials [5]. In flexural creep, differ- 
ences in tensile and compressive steady-state strain 
rates and stress exponents result in a non-linear stress 
dependence. 

Recently, the creep behaviour of an SiC fibre- 
reinforced hot-pressed Si3N4 composite (with 5 wt % 
YzO 3 and 1.25 wt % MgO as sintering additives) has 
been characterized using the four-point bending test. 
Typical creep responses of the 20 vol % composite 
tested at different temperatures and stresses are shown 
in Figs 1 and 2, respectively [6, 7]. The purpose of this 
study is to conduct a numerical analysis for extracting 
both tensile and compressive creep power-law para- 
meters from bend test data. The numerical scheme 
developed by Chuang [8] is used in the pressent study. 
Consistent agreement between the experimentally 
measured results and those determined numerically 
from the governing equations from this analysis has 
been reported for SiA1ON [9] and Nicalon fabric- 
reinforced SiC composite [10]. The implications of 

these parameters for the creep behaviour of the com- 
posites will also be discussed. 

2. Numerical analysis 
To accommodate both compressive and tensile creep 
in a flexing bar, the Norton power law [11] for creep is 
expressed as 

( ~ "]"' 
= Ai - -  (1) 

where ~o is a constant with dimensions of stress, and 
the subscript i is either t or c to indicate tension or 
compression, respectively. Invoking Bernoulli's hy- 
pothesis that plane sections remain plane in bending, 
the strain of an element, e, a distance Y from the 
neutral plane is ~ = K Y, where K is the curvature of 
the neutral plane. The strain rate of a beam element is 
given by ~ = / s  Y + K ~', but because the neutral-plane 
migration during steady-state creep is negligible, the 
K Y term is dropped. The stress in an element of the 
beam a distance Yfrom the neutral plane is then given 
by 

\ A, / = \ / (2) 

Here,/~ = / ( H  and y = Y/H where H is the full beam 
height. Using Equation 2 to derive the equilibrium 
conditions, ZFx (force balance) = 0 and EM (moment 
balance) = 0, for a bar in flexural creep resulted in two 
governing equations which are given in the Appendix. 
Because no analytic solutions were found for deter- 
mining no, nt, Ac and At from the two governing equa- 
tions, a numerical approach was developed to find 
solutions. The methods used are summarized in 'the 
Appendix with more detailed descriptions available 
elsewhere [8, 9]. Once the power-law parameters for 
a material have been numerically determined, stress 
distributions over the height of the beam may be 
calculated for a set of test conditions. 
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Figure 1 Creep response for 20 vol % composite at 250 MPa and 
various temperatures. (a) Creep strain versus time: (0)  1200 ~ ( + ) 
1275 ~ (11) 1350 ~ ((D) 1390 ~ (D) 1450 ~ (b) Creep strain-rate 
versus creep strain: (Yl) 1275~ (+) 1350~ (11) 1390~ (~) 
1425 ~ 

3, Results 
3.1. Tensile and compressive stress 

exponents 
Steady-state creep relationships obtained from the 
flexural creep tests [7] were fitted by using the numer- 
ical procedure outlined above and in the Appendix. 
The solutions, plotted as normalized curvature rate 
versus normalized moment, are shown in Fig. 3 for the 
unreinforced Si3N4 and for the 20 and 30 vol % fibre 
composites. Power-law parameters determined from 
the best-fit solutions are tabulated in Table I. The 
results clearly indicate a profound difference between 
tensile and compressive creep in the matrix Si3N4. In 
the composites, smaller differences were estimated be- 
tween the tensile and compressive creep behaviour, i.e. 
the behaviour was less non-linear. In fact, when com- 
pared only on the basis of a regression fit, the general 
curve fit of the limited composite data was only 
a slight improvement over the linear fit. Obviously, 
data taken over a larger stress range would narrow the 
confidence interval of the fit and thus the stress para- 
meters. The conventional linear regression exponents 
given elsewhere [7] (n = 2.5 for both composites) are 
approximately averages of the tensile and compressive 
creep stress exponents determined numerically [8]. 

3.2. Neutral plane and stress distribution 
In estimating the power-law parameters determining 
the strain rate-applied moment relationship, a set of 
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Figure2 Creep response for 20vo1% composite at 1200~ and 
various stresses. (a) Creep strain versus time: (A) 250 MPa, (B) 
280 MPa, (C) 330 MPa, (D) 350 MPa. (b) Creep strain-rate versus 
creep strain: (~)  250 MPa, ( i )  350 MPa. 

TABLE I Tensile and compressive power-law parameters from 
creep in four-point bending 

Material At nt Ac n~ 

Monolithic SiaN4 6.00 x 10 -11 22 5.50 x 10 -9 0,41 
20vo1% composite 7.50 x 10 T M  5 4.00 x 10 -1~ 1.1 
30vo1% composite 1.25 x 10 -I3 5 5.50 x 10 -~~ 0.70 

values of neutral plane coordinates (NPC) locating the 
neutral plane with respect to the compressive surface 
(he) for each strain rate was calculated. Plotted in 
Fig. 4 is the normalized neutral-plane location versus 
the applied moment normalized using an arbitrary 
value of stress. The neutral-plane location is found to 
have a stronger dependence on the applied moment in 
the matrix specimens than in the composite materials, 
even at the much higher stress levels used to test the 
composites. Neutral-plane migration in the matrix 
bars was confirmed through a limited number of tests 
using the technique of pairing double vertical rows of 
indentations I-9]. The neutral-plane migration meas- 
ured was slightly greater than that calculated using the 
above analysis. 

The driving force for neutral-plane migration is 
stress redistribution across the bar due to unequal 
creep rates in tension and compression. From Equa- 
tion 1 and the numerically determined creep para- 
meters, the tensile and compressive steady-state stress 
distributions may be calculated for each set of test 
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Figure 3 Numerical solution of the stress dependence for mono- 
lithic Si3N 4 and composites at 1200 ~ plotted as normalized curva- 
ture rate as a function of applied moment: ( I )  matrix, (0) 20 vol %, 
(Q) 30 vol %, ( - - )  best fits. 
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Figure 4 Normalized neutral-plane location (0.0 = tensile surface) 
versus applied stress for all materials as determined from numerical 
solutions: (0) matrix, (Q) 20 vol %, (11) 30 vol %. 

conditions. Stress distributions in crept specimens are 
shown for each material in Figs 5-7.  

3.3. Ef fect  o f  n e u t r a l - p l a n e  m ig ra t i on  
The creep strain shown in Fig. 1 was calculated 
directly from the measured deflections assuming no 
migration of the neutral plane using [12] 

4H 
= ~5- Ucp (3) 

Here e is the strain, Ucp the deflection of the centre 
point relative to the load points, l the length of the 
inner span and H the thickness. Calculating the strain 
from the measured deflections using Equation 3 re- 
quires two assumptions: (i) that neutral planes remain 
at the centroid and (ii) that plane sections of the 
creeping bar remain plane in bending. The second 
assumption is part  of Chuang's analysis for stress 
dependence [8], but the stress redistribution and neu- 
tral-plane migration accommodated by this analysis 
violate the first assumption. Neutral-plane migration 
has been observed in SiA1ON [4, 9] and the current 
Si3N4 matrix bars. Calculation of true strains involves 
a correction of the strains calculated using Equation 3. 
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Figure 5 Compressive and tensile steady-state stress distributions 
for monolithic SiaN4 at 1200 ~ and stresses of(. . .  ) 100, ( - - - )  150 
and ( ) 185 MPa. 
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Figure 6 Compressive and tensile steady-state stress distributions 
for 20 vol % composite at 1200 ~ and stresses of( ) 250, ( - - - )  
280 and ( .--)  330MPa. 
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Figure 7 Compressive and tensile steady-state stress distributions 
for 30 vol % composite at 1200 ~ and stresses of( ) 250, ( . . . .  ) 
280 and ( - - . - - )  330 MPa. 

Because the strain exhibits a linear distribution in 
the bar even after neutral-plane shifting, the true strain 
will be directly proport ional  to the magnitude of the 
shift. As shown in Fig. 8, the true strain at any given 
time will be the strain calculated from Equation 2, 
corrected by a factor of H t / 0 . 5  that varies as 
1 <_ HffO.5 < 2, a factor of 2 being the physically im- 
possible situation of having a compressive zone wRh 
zero thickness. 
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Figure8 Geometry of the creep strain correction due to neutral- 
plane shifting during flexural creep. 

The initial solution set of NPC was used to calcu- 
late strain rates which were then refitted, generating 
a new set of NPC and power-law parameters. Multiple 
iterations were performed until the analysis converged 
to a single consistent set of steady-state NPC, power- 
law creep parameters and corrected strain-rates. The 
surprising result was that adjustments in the set of 
power-law stress parameters to account for the correc- 
ted strain rates were less than 1% for any of the 
materials. To estimate the strain rates at higher tem- 
peratures, correction factors for stress-dependent 
strain rates and shifts in NPC were correlated and 
matched to the high-temperature data. A maximum 
10% increase in activation energy was found for the 
composites, while a maximum increase of 16% was 
found for the unreinforced matrix. The uncorrected 
[7] and corrected activation energy for the matrix and 
composites are listed in Table II. 

4. Discussion 
4.1. Stress dist r ibut ion evolut ion and 

neutral-p lane migrat ion 
The simultaneous tensile and compressive deforma- 
tion in a bar during flexural creep result in complex 
transient creep stages. Investigators of flexural creep 
in ceramics have reported both the exsistence and the 
absence of a steady-state creep stage [13, 14]. When 
a steady-state strain rate is observed, the transient or 
primary creep stage in flexural creep is found to persist 
to much longer times and greater strains when com- 
pared with uniaxial tensile or compressive creep tests 
under similar conditions. Chuang et al. [15] con- 
sidered that the prolonged transient creep period was 
due to stress relaxation, with the change in stress 
expressed as 

0o" ~ 0o" t dcy = ~ dt + ~ de (5) 

This equation describes two contributing processes, (i) 
stress relaxation through creep flow due to an im- 
posed strain and (ii) production of elastic stress caused 
by increasing strain. The rate at which stresses are 
redistributed within the bar will depend on the tensile 
and compressive creep rates of the material. If the 
rates are identical, lateral force equilibrium is main- 
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TABLE II Uncorrected and corrected activation energies for the 
monolithic matrix and components 

Activation energy (kJ mol- 1 ) 

Material Uncorrected Corrected 

Matrix 530 619 
20 vol % composite 390 428 
30 vol % composite 371 407 

tained even during stress relaxation and no migration 
of the neutral plane occurs. When creep deformation 
proceeds faster in tension than in compression, the 
tensile load capacity is reduced and the stress distribu- 
tion requires an enlarged tensile zone to maintain 
force equilibrium. This phenomenon is manifested as 
neutral-plane migration [15, 16]. 

Redistribution of the stress in the beam continuous- 
ly evolves with time until a steady state is reached 
[15]. Steady-state stress distributions are 'shown in 
Figs 5 -7  for the matrix and composite materials. Two 
important features of these stress distributions are the 
high shear stresses close to the neutral axis and the 
approximately constant stress level throughout the 
tensile stress zones. Horizontal cracks (parallel to the 
length of the bar) occurring in the matrix bars are 
direct evidence for such large shear stresses [7]. Ob- 
servation of shear cracks at different vertical positions 
of the bar indicates shifting of the neutral plane during 
deformation. Formation of Mode I cracks has been 
observed at the tensile surface perpendicular to the 
tensile stress direction and to the shear-type cracks 
[7]. For  all materials tested, the maximum steady- 
state tensile stress is calculated to be less than half of 
the initially applied elastic stress. Tensile stress relax- 
ation in flexural creep has been reported previously 
[16, 17]. Chuang et al. 1-15] found that the maximum 
stress in the outer material plane decayed very quickly 
compared with the time needed for complete evolu- 
tion of the steady-state stress distribution. This may 
account for the excellent creep resistance in the com- 
posites, even at stresses that are 80-90 % of the ulti- 
mate strength [2]. If a strength-limiting surface flaw is 
not severe enough to cause immediate rupture, the 
stress intensity may decay too quickly for it to grow to 
a critical size. 

Tensile stress relaxation and the accompanying 
stress redistribution is observed in the composites. 
From the composite creep strains in Fig. 1, stresses 
were calculated via the fibre compliance [18] and 
plotted against time for the 20 vol % composite tested 
at 1200 ~ MPa. This result is shown in Fig. 9. As 
shown, the stress relaxed from an initial value of 

1050 MPa to 500 MPa at the steady state. Assum- 
ing that the initial 250 MPa load in the composite is 
completely supported by the fibre volume fraction, the 
stress in the fibres is calculated to be 1250 MPa. This 
value agrees very well with the fibre stresses calculated 
from the composite creep strains and the fibre compli- 
ance. Such initially high fibre stress is evidence that 
substantial relaxation is occurring in the matrix phase. 
To assess the relative stress relaxation in the fibres 
when the steady state is reached, the tensile zone stress 



distribution (Fig. 6) was used to calculate the max- 
imum fibre stress. If the fibres sustain the whole tensile 
load, a stress of 550 MPa is calculated. Again, this 
value is consistent with that calculated from the strain 
and fibre compliance, if the load is mainly supported 
by the fibres. The curve in Fig. 9 suggests that trans- 
ient creep response as well as the stress redistribution 
is dominated by the reinforcing fibres. 

TABLE III Primary creep stress exponent as a function of time 
for unreinforced Si3Na 

Time (h) np 

0.1 5.7 
0.33 4.7 
1.0 3.0 

10.0 2.6 

4.2. Stress exponen ts  
The compressive stress exponents are 1.1 and 0.7 for 
the 20 and 30 vol % composite materials, respectively. 
In amorphous grain-boundary phase materials, such 
as the matrix, compressive stress exponents of the 
order of unity have previously been associated with 
Coble creep where material diffusion is dominant 
along the grain boundaries I-5, 19]. Exponents of unity 
have also been correlated with viscous flow of the 
grain boundary phase [20]. For the SCS-6 fibre com- 
pressive creep data are not yet available. An nc of 2.3 
was obtained by Carter et al. [20] for bulk CVD SiC 
for which the creep mechanism was determined to be 
dislocation glide. The rate-controlling step was over- 
coming the Peierls stresses. The activation energy, 
though, reported as 173 kJmo1-1 between 1673 and 
1873 K and at a stress of 220 MPa, is too low to 
account for the rate-controlling mechanism in the 
current composite materials. This means that disloca- 
tion glide in the fibres is possible at 1200 ~ but the 
{ 1 1 1 } planes on which dislocations are most likely to 
move are oriented parallel to the fibre axis, minimizing 
the resolved shear stress on the {1 1 1} planes and 
hence the dislocation motion. However, axially 
oriented shear stresses generated during load transfer 
may cause limited dislocation activity. Compressive 
creep stress exponents of the order of unity for the 
composites might be associated with diffusive or 
viscous flow mechanisms in the matrix phase. The 
fibre will have an effect on this parameter, though to 
what extent it is not known. 

The tensile creep stress exponent for the matrix data 
is 22, which is significantly higher than that of 5 for the 
composites. Chen and Chuang [9] reported a tensile 
creep stress exponent of 13.8 for an SiA1ON material 
using the same numerical procedure. They attributed 
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Figure 9 Fibre stresses calculated using the compliance method of 
DiCarlo 1-16], plotted against time for the 20 vol% composite 
tested at 1200 ~ MPa. 

this high tensile creep stress exponent to a diffusive 
creep crack growth mechanism. High-temperature 
subcritical-crack growth exponents up to 40 have 
been reported, 1-21]. Khandelwal et al. 1-22] reported 
an n~ of 22 for 6 wt % Y203-2 wt % AI203-Si3N4, 
and observed slow crack growth occurring within the 
intergranular phase by grain boundary sliding, cavita- 
tion, and cavity linkage. Microstructural examination 
of crept matrix specimens in the current study 
confirmed thai intergranular microcrack growth 
occurred. 

Reinforcing the Si3N4 with SiC fibres reduces the 
tensile stress exponent from 22 to 5, indicating both 
a reduced susceptibility to matrix subcritical crack 
nucleation and growth and a change in the creep 
mechanism. The tensile stress exponent determined 
numerically is in good agreement with experimental 
results (nt = 6) 1-23]. Since the stress exponent for' the 
SCS-6 fibres up.to 1400 ~ at 278 MPa is unity [18], 
the stress dependence exhibited by the composites 
would appear to originate from another source. The 
stresses in the fibres, though, are calculated to have 
been much greater in these creep tests than in the 
single-filament tests of DiCarlo 1-16]. In view of the 
periodically repeating stress relaxation postulated to 
occur within the composites [7], one explanation 
might be that the stress exponent is associated with 
a primary or transient creep, process in the matr ix  

phase. In an analysis of flexural creep of hot-pressed 
MgO-SiaN4, Fett et al. [24], using creep strains 
measured at 0.1 h, reported a primary creep stress 
exponents of 5.6. Using their analysis procedure based 
on strain at constant time, primary creep stress expo- 
nents for the matrix Si3N4 were calculated and are 
tabulated in Table III. This analysis assumes negli- 
gible creep asymmetry within the bar at such short 
times. However, initial stresses within a creeping 
Si-SiC bar were previously found to decay very rap- 
idly and render the above assumption invalid [16]. 
The assumption of negligible creep asymmetry, 
though, was shown to be non-critical in the general 
stress analysis. After accounting for creep asymmetry 
(neutral-plane migration), the stress parameters 
changed by less than 1% if at all, even reaching 
a steady state. The consistency between the stress 
exponents for primary creep ( ,-~ 0.3 h) in the matrix 
and steady-state creep in the composites suggests that 
there is a continuously changing stress distribution in 
the matrix phase of the composites. The sharp fall-off 
in primary stress exponent with time would also sug- 
gest a relaxation time of ~ 0.3 h for a stress wave or 
redistribution. If correct, this also implies a cyclical 
creep mechanism as proposed previously [7]. Though 
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inconclusive, these arguments show that the creep 
mechanism in the composites may not easily be as- 
signed to a simple mechanism. 

measured at sufficiently low stresses the activation 
energy of the matrix would be that of the composites 
between 1200 and 1350 ~ 

4.3. Activation energy 
The unreinforced matrix under an applied stress of 
100 MPa exhibited an apparent activation energy 
(532kJmo1-1 over the 1200-1350~ temperature 
range. When calculated using the estimated strain 
rates, an activation energy of 619kJmo1-1 is ob- 
tained. The corrected value is consistent with the ac- 
tivation energies of ~ 650kJmo1-1 tabulated by 
Davis and Carter [17] for several hot-pressed silicon 
nitrides having various amounts and compositions of 
sintering additives. It is also in the range of activation 
energies for which Birch et al. [25] proposed that 
creep is governed by the rate of microcrack formation 
within the intergranular phase. 

Apparent activation energies for the 20 and 
30vo1% fibre composites were calculated as 
390 kJ mol- z at 250 MPa/1200-1350 ~ and 
370 kJ mol- 1 at 250 MPa/1200-1450 ~ respectively. 
Values calculated from estimated strain rates were 428 
and 407 kJ mol- 1. Because these energies are approx- 
imately equivalent, the same creep deformation mech- 
anism is assumed to be operative. Both activation 
energies are lower than that determined for the un- 
reinforced matrix and that of 480kJmo1-1 deter- 
mined for the SiC fibre [18] (the only data available). 
In a previous study [26] it was reported that at tem- 
peratures below 1823 K, Si-N diffusion in the grain 
boundary phase of Y2Oa-SiaN4 had an activation 
energy of 448 kJmol -~. This is quite close to the 
measured activation energies, considering the possible 
impurity content and fabrication differences [26, 27]. 
The possibility that the composite activation energies 
(407 and 428 kJ tool- ~ ) are dictated by the intergranu- 
lar phase would seem to conflict with the activation 
energy (619kJmo1-1) measured for the matrix, but 
the stress state within the matrix phase of the com- 
posites is much different to that in the matrix bars. 
Also, it was presumed that the creep mechanism for 
a given material was the same over all temperature 
and stress levels. Changes in mechanism from non- 
cavitational to cavitational have been observed in 
SiaN4 and Si-SiC ceramics when tested over suffi- 
ciently high stress and temperature ranges 
[16, 20, 28]. For the current matrix material there 
may be a threshold stress below which microcrack 
formation does not control the creep mechanism. The 
stress of 100 MPa used to determine the activation 
energy of the current Si3N4 was found to generate 
intergranular crack formation and is obviously over 
this threshold. Through the restraining force supplied 
by the composite reinforcing fibres, the matrix phase 
stresses may never reach the microcracking threshold, 
or because of the temporal nature of creep, the thres- 
hold may be reached only transiently such that suffi- 
cient stress intensity is not maintained for microcrack 
formation. Without the imposition of microcracking, 
matrix creep would be controlled by the properties of 
the intergranular phase. This also suggests that if 
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5. Conclusions 
The tensile stress exponent determined using the 
model proposed by Chuang is in close agreement with 
experimental results. The proposed deformation 
mechanism was supported by the fact that the steady- 
state stress exponent is consistent with the stress expo- 
nents for primary creep in the matrix material, yet the 
creep strain curves are clearly dominated by creep of 
the SiC fibre. The corrected activation energies for the 
composites appear to correspond with the activation 
energy measured for Si-N diffusion through the grain 
boundary phase. While long-term composite creep 
strains are controlled by deformation in the reinforc- 
ing fibre, the stress dependence and deformation kin- 
etics appear to be dictated by the matrix phase. Fur- 
ther research will be needed to verify the proposed 
rate-controlling mechanisms. 
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Appendix: Numerical stress analysis 
Incorporating Equation 2 into the force and moment 
balance calculations for a bar in four-point bending 
creep resulted in two governing equations [9]. From 
the force balance 

I A(x/nt+l) ( ~c(nt-[- 1)~nt/(nt+l)'] 
A~ dn~ ]~(nt-nc)/[nc(nt+l)] nt(nc + 1)/ [ 

h'~ '("c+l)/['c('t+ln + h~ -- 1 = 0 (A1) 

From the moment balance 

( ~_~_~l/nt . ( 1  he)'2nt+l'/nt "~ - (L '~  1/nc 
At/  2n t + 1 ~Ac/ 

n~/2nc + l_r (2"~ +1)/"~ = m (A2) 

A single data point consisted of the normalized curva- 
ture rate,/~, the normalized moment, m, and the nor- 
malized neutral plane distance from the compressive 
stress surface, he. At an applied stress or, m = or/6 and 
/~ = 2~ [20]. Because an analytic solution for these 
equations does not exist, a numerical method is em- 
ployed. First, reasonable values for the creep para- 
meters At, nt, Ar and n~ are chosen, and then for each 
value of/~ a corresponding neutral axis location he is 
found using Equation A1 through a Newton- 
Ralphson root-finding algorithm. Non-linear regres- 
sion is then used to fit Equation A2 to the three one- 
dimensional arrays of/~, he and applied stress m. The 
analysis is then restarted using the numerically deter- 
mined parameters At, r/t, A~ and n~. The best estimate 
of the creep parameters At, nt, A~ and n~ is obtained 



when a self-consistent parameter set is determined, i.e. 
when h~ does not change on the following iteration. 
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